'); })(); (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })(); '); })();

当前位置:首页 > 教育 > 正文

    好未来如何评判一项AI技术对于一教育产品的意义和价值
    更新时间:2019-06-24 19:35:21 点击数:231 来源:本站

      数字化容易理解,就是把传统的纸质内容转化成电子版本,是后续 AI 技术在教育行业落地的重要基础。在此基础上,如何更好地利用这些数据就是结构化过程。而使用当下的 AI 技术从图像、语音等入口为产品赋予效果与价值则是所谓的智能化。

      我们可以看到,2013年是中国互联网教育元年,有一些公司提出了“互联网教育”的概念。当时AI还未兴起,但有许多公司参与其中,都开始做 AI,不论是传统的教育从业者,还是从互联网公司出来的创业者,亦或是投资人,均是如此。

      2013年底到2014年初,不少互联网教育创业公司诞生。那时与AI最接近的产品是类似于拍照搜题的APP,相当于学习过程阶段的学习工具,这种工具符合技术主导、尤其是技术出身的教育创业者。那时大家依然是从教育创业方面讲互联网教育,大部分是把教育内容数字化。

      AI线年AlphaGo战胜人类围棋手事件。那时的AI新技术主要指像图形、图象以及表情的识别、自然语言处理等,是教育的一个新切入点。在这之后,AI知识开始普及,人们也开始思考AI的本质以及与企业深度合作的可能性。

      在AI最开始出现时,拍照搜题是我认为AI在教育领域的一个非常好的应用。这波技术始于以名片识别厂商为代表的一批公司,这些公司最开始做中文的印刷体识别,包括给名片拍照将其直接转化成文字的形式。不过,那时纯粹的AI公司、互联网公司中的AI团队都还没出现,所以AI在教育领域还大部分停留在概念阶段。

      而从2017年初到2017年中,AI 在教育领域才逐步进入蓬勃发展期。这个时期大量涌现了真正和AI技术相关的教育产品,AI+教育也稳步迈向了繁荣期。

      这就要提到自适应学习,事实上,有许多公司在去年发布了自适应学习系统。自适应学习有很多变种,是一个范围很大的概念。伴随而来的是高考机器人,这类机器人可以解题、判题以及自动阅卷。在中国的英语考试中,不管是、GRE,还是中考、高考,其中的英语口语阅卷都可以用计算机完成,这些产品的出现标志着AI在教育里面的真正落地。

      A:我们是在2016年的时候开始了AI方面的尝试,开始积极把自适应学习技术运用到好未来的教育体系里,探索拍照搜题、自然索引等功能。那时我们也开始投资全球的自适应学习公司,例如Knewton。

      其实在2016年,我们最开始考虑的是商业智能,希望可以让我们的数据产生有价值的产品,进而对学生有所帮助,并为此成立了一个大数据部门,执行的也就是之前所提到的结构化过程。

      在2017年下半年,我们开始在多个维度全面探索AI。我们也在思考,究竟AI在哪些业务领域可以产生实际的价值?

      当时我们自己也没有一个确定的答案,所以我们一边同行业进行广泛交流,一边寻找行业内的刚需和痛点并快速打磨产品,初步形成了 AI 雏形。

      在2017年8月,我们正式宣布成立AI Lab并推出“魔镜系列”产品,上个月我们发布了第二代产品:WISROOM智慧课堂解决方案。

      双师课堂是我们第一次解构学习一词里面的“学”和“习”二字。通常意义上我们认为,“学”是接受新知识,“习”是复习、温习、预习。所谓“双师”其实是把学习的过程拆解成两个步骤,每个步骤由专门的老师负责。

      第一个老师负责孩子“学”的过程,与孩子进行互动、传递新知识;第二个老师叫辅导老师,在孩子的学习过程中进行更细密度的交互、沟通,包括鼓励、表扬,带着孩子去解决问题,负责课后答疑,覆盖知识盲点等。

      双师的主讲老师会同时存在于很多个教室,而每个学生其实都需要知道老师给他的反馈,无论是点名、表扬、互动、点评,对孩子而言都非常有价值。

      这里涉及到一个脑研究的核心学术认知,一个四年级以下的孩子,他喜好或是厌恶一门学科是与老师对他的注意力分配呈正相关。

      魔镜就给予了老师们一副千里眼、一对顺风耳和一个超能记忆力,帮助老师不仅能看到孩子在课堂上的表现,还能记忆历史表现。当然,魔镜也可以让老师看到班上每一位同学上课的专注度。

      随着时间的变化,这个数据从数字化到结构化,可以拟合成非常多有价值的信息。比如说老师可以评判出一个孩子最近三个月和最近一个月是否出现了显著差异。

      我们在魔镜基础上升级AI助手,系统能听、能看、能评价学生与老师,这有利于我们做出更细致的判断,从而知道这些课程好不好,是否需要调整难易程度,这就是智慧教室WISROOM。

      在过去,一节课对于这个班级是不是太难了或太简单了,我们并不知道。上完课后,孩子说听不懂,老师下次才会调整。而未来的智慧教室会先导入孩子的画像,自动计算和生成这节课应该用什么难度、什么节奏、什么教学框架去给孩子们上课,这就是我们所定义的智慧教室。

      换言之,也就是整个学习过程是因材施教的,而这些都是基于底层技术的应用,比如声音处理、语音识别、语音合成、面部表情计算、情感计算等。

      A:,其余每个事业部、项目组都有AI方面的人才,进行数据挖掘、数据分析、商业智能、行情分析等。

      好未来的AI Lab更像是AI产品研发部,需要占领行业制高点。我们有专利,陆续会有自然科学基金,也有国家项目重点支持。

      我们希望有研有发,避免研而不发,或者多研少发。所以我们很多路径跟其他的AI Lab可能不一样,我们的愿景是最后能通过AI产品走进用户和商业体系,让大家感受到AI转化为产品以后真正发挥的意义和价值。

      Q:是否可以通过一个具体的落地案例,讲述团队从到最初的需求确认到技术研发、迭代优化至最终产品上线的全过程?

      我们要对需求有足够深刻和细致的把握,这是我们的立身之本。比如一个教室里开灯或不开灯、太阳在东边还是在西边造成光影的变化,这些都细节都会对算法造成影响。

      我们有一个项目想做一件事情,就是对老师上课质量的好坏进行评价。之前好未来有非常好的评价机制,根据这个老师的学生对他的喜好程度进行评价,但是评价周期是以学期为基准。

      我们有一个团队,专门评价老师教学质量好坏。我们问最有经验的专家怎么评价这些老师?他说我只要两分钟,看两件事。第一件事是听老师讲课的感觉,二是看老师的板书。

      为了做这样一套可以评估每个老师上课质量的系统,我们找到清华大学语音情感方面的专家。要知道,老师有那么多重要的表情需要给予关注,我们应该怎样做这样一套评估系统呢?

      解决这个问题的核心是要有科学解决问题的方。比如AI中有非常经典的解决方法叫做标签、标注,就是一个老师讲得好不好,如果一百个人都说好,只有一个人说不好,那么我们就听一百个人的观点,这是第一类。第二类是,如果家长都说好,其他人说不好,听家长的。第三类是,如果专家说好,小白说不好,那么听专家的。这三个维度一叠加,我们基本上就能确定一个正确的方式。这是我们的AI团队拟合出来的,第一个叫做愉悦程度,第二个叫做情感饱和度。

      通过这样的判断,我们可以知道,好未来原来有那么多幽默的老师、哪些科目的老师被学生爱戴,这都是可以数据化的,是从数据化通往智能化的一个必经过程。我们目前已经在15间教室对这套系统进行了部署,希望未来语音可以解决85%以上的问题。

      当然,我们不能简单地说哪项数据好,哪个老师就一定好,但是可以据此对老师进行分类。中国历史上有一个看上去准确但实际上不准确的描述,叫做“教无定法”,就是说好的老师有不同的教法。在我看来,“教无定法”只是因为没有强大的机制将其分类。

      另一方面,每个老师看到这套系统的结果也会觉得非常有价值,他能知道自己是不是幽默型的,然后再仔细看自己的幽默指数有多少,系统也会告诉他在哪个地方可以做得更好。

      Q:对于教育行业来说,学习效果才是企业竞争力的最终评判要素。很多情况下,用户可能无法直接从眼前的产品使用端感受到AI能力的存在。

      A:我认为有两件事情很重要。第一件事情叫做价值的外显性,第二件事情叫做理论和学术的支撑。外显性让人产生直觉的信心,理论和学术的支撑是让它产生底层的信心。

      把 AI 技术引入教育产品所带来的变化主要体现在三个方面,一是提高系统的运营效率,二是提升学生的学习体验和学习兴趣,三是生成独立的、全新的产品形态。

      对于教育而言,AI 更像是一个杠杆和一个支点,可以从方方面面渗透其中并撬动许多业务,让其焕发出更多的生机和活力。

      Q:有人把教育比作一个黑盒,如果教学过程没有被数据化,那么教学质量也无法被量化。在各行各业都在发生数据的时候,教育行业也是如此。如何最大程度地挖掘教育数据的价值?

      A:在教育行业,数据是非常重要的,数据量每年正以十倍的速度增长,未来五年还会继续保持这一态势。

      而教育数据的挖掘其实还处在一个非常早期的阶段,每个企业、每个团队都在探索,小到上课时观察微笑次数形成报告发送给家长,大到掌握学生在哪个知识点上没学好。

      自适应学习是典型的数据探索。以错题本为例,如果错了一百道题,考试前学生就会去看这一百道题。那么这一百道题有没有共性,能不能结构化缩减,就是一个很大的突破。未来的数据挖掘会越来越成熟的。

      数据共享是一个极有价值但实践难度却很大的事情。数据是一个既涉及用户隐私本身又具备巨大商业价值的事情,大家不知道这个?;げ闳绾问褂?,所以未来行业中可能会有更多的一些契机和技术,包括区块链等技术,促进数据向更加开放和共享的方向前进。目前,我们还只是一个保存者,把它安安全全的保存在这里,并没有充分的发挥出它的价值,还停留在初级阶段。

      Q:AI+教育行业仍处于早期发展的升温阶段,粗略统计,目前至少已经有40家公司已宣布入场,你如何看待领域发展的现状?

      但从积极的方面看,在新技术进入教育领域的过程当中,聚光灯也随着而来。这意味着,一是会有更多的人才愿意进来,二是更多资本将加大尝试频率、产业可能性也将变得更多。

      以人才为例,此前行业内可能大部分都是教育学家,未来则有更多的数学家、统计学家、AI 科学家、甚至是脑科学、基因科学家跨行进入教育领域。AI 这波浪潮过来以后,很多工程师也可能会把进入教育行业作为工作的首选,我认为这具有较大的社会意义。

      A:即便众多公司宣布入场做 AI 教育,但大家几乎都在各自不同的领域进行着探索。这个市场很大,大家并不是在一个小小的领域里碰撞、摩擦,而是根据自身优势挖掘问题、解决问题。在这里,好未来有自己的独特之处。

      在不改变老师的授课习惯和学生学习习惯的前提下,让教室里的学生拥有更好的学习体验、让老师被更好地赋能,是好未来的特色。

      而这个特色是基于我们 18000 多名一线老师每天讲课所收集上来的真实问题,这些问题会被提供给 AI 产品经理以及教育专家,抽象成待技术解决的问题,再看当前的技术能否解决。如果没有这个前置能力,是很难切入课中环节的。

      好未来的亮点在于对于真实教育环节中出现的问题、痛点和刚需的把握。问题越真实,解决问题就越有力量;问题越不真实,一旦遭遇挫折团队就越容易往回撤。很多公司布局科技研发所碰到的最大瓶颈就在于此,因为它们看不到科技投入以后会给企业、团队所带来的价值。

      以前好未来投资建希望小学,后来我们发现了更好的方式来做这件事情,就是线上支教,精准扶贫。一方面通过直播技术让好的老师在线扶贫,另一方面把教育的质量提得更高,价格降得更低,甚至提供很多免费的课程。

      中国不缺老师,但缺好老师,我们对AI的理解本质上是优质教育资源的供给端。要让一个好的老师在AI的辅助下覆盖更多的学生,让一个60分的老师在AI的赋能下达到80分到85分。

      AI 在教育领域会成为一个非常重要的角色,因为所有的系统本身都是科技,包括我们已经研发的 ICS(智能教学系统,现已更名为 ITS)、IPS(智能练习系统,后升级更名为学而思“云学习”)、魔镜、WISROOM等。我们对未来 AI 在教育领域的最终设想是:AI 教书,老师育人。

      2019年,教育行业机会与挑战并行。新政策下,高品质与差异化的“慢”教育产品迎来机遇。资本回归理性,在线教育机构规模不盈利问题亟需突破。如何把握发展新形势,创造教育新突破。5月15日,在北京千禧大酒店,亿欧教育诚邀各位共话教育之道。

×
97棋牌 皇冠现金代理 老棋牌游戏平台,老棋牌游戏平台app 吉林棋牌 苍山县| 舞阳县| 惠州市| 宜君县| 镇平县| 元氏县| 岳西县| 阿克陶县| 舒兰市| 称多县| 锦屏县| 仁化县| 焉耆| 介休市| 鲁山县| 沅江市| 闸北区| 大兴区| 香河县| 松原市| 肃北| 镶黄旗| 新余市| 浮山县| 黄山市| 定襄县| 永顺县| 图木舒克市| 灌阳县| 南陵县| 大邑县| 陆丰市| 鄂托克前旗| 汝州市| 青冈县| 牟定县| 台山市| 六安市| 灌南县| 洪江市| 阿拉善左旗| http://www.yqqtfn.cn http://www.cb687c.cn http://www.2nr9v.cn http://www.hrmtf.cn http://www.k972p.cn http://www.zqbfwj.cn